Providers

A Provider implements the calculation logic for one or more Measure.

This page provides a list of the Providers that are available in this package.

accuracy

Accuracy provider

Supported Measures:

  • Accuracy(rel=ANY)@ANY

compat

Version of the compatibility measure desribed in:

Citation

Clarke et al. Assessing Top- Preferences. ACM Trans. Inf. Syst. 2021. [link]
@article{DBLP:journals/tois/ClarkeVS21,
  author       = {Charles L. A. Clarke and
                  Alexandra Vtyurina and
                  Mark D. Smucker},
  title        = {Assessing Top- Preferences},
  journal      = {{ACM} Trans. Inf. Syst.},
  volume       = {39},
  number       = {3},
  pages        = {33:1--33:21},
  year         = {2021},
  url          = {https://doi.org/10.1145/3451161},
  doi          = {10.1145/3451161},
  timestamp    = {Sat, 09 Apr 2022 12:20:33 +0200},
  biburl       = {https://dblp.org/rec/journals/tois/ClarkeVS21.bib},
  bibsource    = {dblp computer science bibliography, https://dblp.org}
}

Supported Measures:

  • Compat(p=ANY,normalize=ANY)

cwl_eval

cwl_eval, providing C/W/L (“cool”) framework measures.

https://github.com/ireval/cwl

Citation

Azzopardi et al. cwl_eval: An Evaluation Tool for Information Retrieval. SIGIR 2019. [link]
@inproceedings{DBLP:conf/sigir/AzzopardiTM19,
  author       = {Leif Azzopardi and
                  Paul Thomas and
                  Alistair Moffat},
  editor       = {Benjamin Piwowarski and
                  Max Chevalier and
                  {\'{E}}ric Gaussier and
                  Yoelle Maarek and
                  Jian{-}Yun Nie and
                  Falk Scholer},
  title        = {cwl{\_}eval: An Evaluation Tool for Information Retrieval},
  booktitle    = {Proceedings of the 42nd International {ACM} {SIGIR} Conference on
                  Research and Development in Information Retrieval, {SIGIR} 2019, Paris,
                  France, July 21-25, 2019},
  pages        = {1321--1324},
  publisher    = {{ACM}},
  year         = {2019},
  url          = {https://doi.org/10.1145/3331184.3331398},
  doi          = {10.1145/3331184.3331398},
  timestamp    = {Mon, 26 Jun 2023 20:45:15 +0200},
  biburl       = {https://dblp.org/rec/conf/sigir/AzzopardiTM19.bib},
  bibsource    = {dblp computer science bibliography, https://dblp.org}
}

Installation:

pip install ir-measures[cwl_eval]

Supported Measures:

  • P(rel=ANY,judged_only=False)@ANY

  • RR(rel=ANY,judged_only=False)@NOT_PROVIDED

  • AP(rel=ANY,judged_only=False)@NOT_PROVIDED

  • RBP(rel=REQUIRED,p=ANY)@NOT_PROVIDED

  • BPM(T=ANY,min_rel=ANY,max_rel=REQUIRED)@ANY

  • SDCG(dcg='log2',min_rel=ANY,max_rel=REQUIRED)@REQUIRED

  • NERR8(min_rel=ANY,max_rel=REQUIRED)@REQUIRED

  • NERR9(min_rel=ANY,max_rel=REQUIRED)@REQUIRED

  • NERR10(p=ANY,min_rel=ANY,max_rel=REQUIRED)

  • NERR11(T=ANY,min_rel=ANY,max_rel=REQUIRED)

  • INST(T=ANY,min_rel=ANY,max_rel=REQUIRED)

  • INSQ(T=ANY,min_rel=ANY,max_rel=REQUIRED)

gdeval

gdeval

Installation:

Install perl, see <https://www.perl.org>

Supported Measures:

  • nDCG(dcg='exp-log2',gains=NOT_PROVIDED,judged_only=False)@REQUIRED

  • ERR@REQUIRED

judged

python implementation of judgment rate

Adapted from OpenNIR’s implementation: https://github.com/Georgetown-IR-Lab/OpenNIR/blob/master/onir/metrics/judged.py

Supported Measures:

  • Judged@ANY

msmarco

MS MARCO’s implementation of RR

Supported Measures:

  • RR(rel=ANY,judged_only=False)@ANY

pyndeval

pyndeval

Installation:

pip install ir-measures[pyndeval]

Supported Measures:

  • ERR_IA(rel=ANY,judged_only=ANY)@ANY

  • nERR_IA(rel=ANY,judged_only=ANY)@ANY

  • alpha_DCG(alpha=ANY,rel=ANY,judged_only=ANY)@ANY

  • alpha_nDCG(alpha=ANY,rel=ANY,judged_only=ANY)@ANY

  • NRBP(alpha=ANY,beta=ANY,rel=ANY)

  • nNRBP(alpha=ANY,beta=ANY,rel=ANY)

  • AP_IA(rel=ANY,judged_only=ANY)

  • P_IA(rel=ANY,judged_only=ANY)@ANY

  • StRecall(rel=ANY)@ANY

pytrec_eval

pytrec_eval

https://github.com/cvangysel/pytrec_eval

Citation

Gysel and Rijke. Pytrec_eval: An Extremely Fast Python Interface to trec_eval. SIGIR 2018. [link]
@inproceedings{DBLP:conf/sigir/GyselR18,
  author       = {Christophe Van Gysel and
                  Maarten de Rijke},
  editor       = {Kevyn Collins{-}Thompson and
                  Qiaozhu Mei and
                  Brian D. Davison and
                  Yiqun Liu and
                  Emine Yilmaz},
  title        = {Pytrec{\_}eval: An Extremely Fast Python Interface to trec{\_}eval},
  booktitle    = {The 41st International {ACM} {SIGIR} Conference on Research {\&} Development
                  in Information Retrieval, {SIGIR} 2018, Ann Arbor, MI, USA, July 08-12,
                  2018},
  pages        = {873--876},
  publisher    = {{ACM}},
  year         = {2018},
  url          = {https://doi.org/10.1145/3209978.3210065},
  doi          = {10.1145/3209978.3210065},
  timestamp    = {Sat, 09 Apr 2022 12:44:58 +0200},
  biburl       = {https://dblp.org/rec/conf/sigir/GyselR18.bib},
  bibsource    = {dblp computer science bibliography, https://dblp.org}
}

Installation:

pip install --upgrade pytrec-eval-terrier

Supported Measures:

  • P(rel=ANY,judged_only=ANY)@ANY

  • RR(rel=ANY,judged_only=ANY)@NOT_PROVIDED

  • Rprec(rel=ANY,judged_only=ANY)

  • AP(rel=ANY,judged_only=ANY)@ANY

  • nDCG(dcg='log2',gains=ANY,judged_only=ANY)@ANY

  • R(judged_only=ANY)@ANY

  • Bpref(rel=ANY)

  • NumRet(rel=ANY)

  • NumQ

  • NumRel(rel=1)

  • SetAP(rel=ANY,judged_only=ANY)

  • SetF(rel=ANY,beta=ANY,judged_only=ANY)

  • SetP(rel=ANY,relative=ANY,judged_only=ANY)

  • SetR(rel=ANY)

  • Success(rel=ANY,judged_only=ANY)@ANY

  • IPrec(judged_only=ANY)@ANY

  • infAP(rel=ANY)

ranx

ranx

https://amenra.github.io/ranx/

Citation

Bassani. ranx: A Blazing-Fast Python Library for Ranking Evaluation and Comparison. ECIR (2) 2022. [link]
@inproceedings{DBLP:conf/ecir/Bassani22,
  author       = {Elias Bassani},
  editor       = {Matthias Hagen and
                  Suzan Verberne and
                  Craig Macdonald and
                  Christin Seifert and
                  Krisztian Balog and
                  Kjetil N{\o}rv{\aa}g and
                  Vinay Setty},
  title        = {ranx: {A} Blazing-Fast Python Library for Ranking Evaluation and Comparison},
  booktitle    = {Advances in Information Retrieval - 44th European Conference on {IR}
                  Research, {ECIR} 2022, Stavanger, Norway, April 10-14, 2022, Proceedings,
                  Part {II}},
  series       = {Lecture Notes in Computer Science},
  volume       = {13186},
  pages        = {259--264},
  publisher    = {Springer},
  year         = {2022},
  url          = {https://doi.org/10.1007/978-3-030-99739-7\_30},
  doi          = {10.1007/978-3-030-99739-7\_30},
  timestamp    = {Wed, 27 Apr 2022 20:12:25 +0200},
  biburl       = {https://dblp.org/rec/conf/ecir/Bassani22.bib},
  bibsource    = {dblp computer science bibliography, https://dblp.org}
}

Installation:

pip install ir-measures[ranx]

Supported Measures:

  • P(rel=ANY,judged_only=False)@ANY

  • SetP(rel=ANY,judged_only=False)

  • RR(rel=ANY,judged_only=False)@NOT_PROVIDED

  • Rprec(rel=ANY,judged_only=False)

  • AP(rel=ANY,judged_only=False)@ANY

  • nDCG(dcg=('log2', 'exp-log2'),gains=NOT_PROVIDED,judged_only=False)@ANY

  • R(judged_only=False)@ANY

  • SetR(rel=ANY)

  • NumRet(rel=REQUIRED)

  • Success(rel=ANY,judged_only=False)@REQUIRED

runtime

Supports measures that are defined at runtime via ir_measures.define() and ir_measures.define_byquery().

Supported Measures:

trectools

trectools

https://github.com/joaopalotti/trectools

Citation

Palotti et al. TrecTools: an Open-source Python Library for Information Retrieval Practitioners Involved in TREC-like Campaigns. SIGIR 2019. [link]
@inproceedings{DBLP:conf/sigir/PalottiSZ19,
  author       = {Jo{\~{a}}o R. M. Palotti and
                  Harrisen Scells and
                  Guido Zuccon},
  editor       = {Benjamin Piwowarski and
                  Max Chevalier and
                  {\'{E}}ric Gaussier and
                  Yoelle Maarek and
                  Jian{-}Yun Nie and
                  Falk Scholer},
  title        = {TrecTools: an Open-source Python Library for Information Retrieval
                  Practitioners Involved in TREC-like Campaigns},
  booktitle    = {Proceedings of the 42nd International {ACM} {SIGIR} Conference on
                  Research and Development in Information Retrieval, {SIGIR} 2019, Paris,
                  France, July 21-25, 2019},
  pages        = {1325--1328},
  publisher    = {{ACM}},
  year         = {2019},
  url          = {https://doi.org/10.1145/3331184.3331399},
  doi          = {10.1145/3331184.3331399},
  timestamp    = {Sun, 04 Aug 2024 19:39:40 +0200},
  biburl       = {https://dblp.org/rec/conf/sigir/PalottiSZ19.bib},
  bibsource    = {dblp computer science bibliography, https://dblp.org}
}

Installation:

pip install ir-measures[trectools]

Supported Measures:

  • P(rel=1,judged_only=False)@ANY

  • RR(rel=1,judged_only=False)@NOT_PROVIDED

  • Rprec(rel=1,judged_only=False)

  • AP(rel=1,judged_only=False)@ANY

  • nDCG(dcg=ANY,gains=NOT_PROVIDED,judged_only=False)@ANY

  • Bpref(rel=1)

  • RBP(p=ANY,rel=ANY)@ANY